文章编号:1671-6833(2021)02-0087-06

ITO 陶瓷靶材溅射过程中结瘤行为研究

罗 文1,孙本双2,刘书含2,陈 杰2,孟 将1,李树荣1

(1.西北稀有金属材料研究院稀有金属特种材料国家重点实验室,宁夏石嘴山753000;2.郑州大学河 南省资源与材料工业技术研究院,河南郑州450001)

摘 要: ITO 陶瓷靶材的结瘤行为严重影响靶材的应用及其溅射薄膜性能,对结瘤的形成机理进行深入 研究具有重要意义。针对不同参数设置的 ITO 靶材进行磁控溅射,利用扫描电子显微镜(SEM)、X 射线 衍射仪(XRD)以及 X 射线光电子能谱仪(XPS)等技术分析靶材在溅射过程中的结瘤行为。结果表明: 随着溅射时间的延长,刻蚀环深度增加,靶材表面开始出现结瘤并向刻蚀环蔓延,结瘤的出现使刻蚀环 边缘溅射速率降低。结瘤主要由缺 O 富 Sn 的非化学计量比 ITO 组成,是靶材被溅射原子在低溅射速率 处反向沉积形成。由于 Sn 原子在不同区域的溅射差异以及靶面被溅射的 O 原子易形成 O 离子,从而使 结瘤组分偏离化学计量比。In₂O₃/Sn(Sn 固溶于 In₂O₃)晶内的富 Sn 析出相粒子是溅射早期结瘤形成的 主要原因,导电性及导热性极差的结瘤在溅射过程中易积聚电荷并诱发弧光放电,使其在热应力作用下 破裂,散落的颗粒会成为新结瘤的诱发点,导致结瘤覆盖率迅速增大。

关键词:ITO 靶材;磁控溅射;结瘤;微观组织;结瘤机制

中图分类号:TB383.2 文献标志码:A

doi:10.13705/j.issn.1671-6833.2021.02.003

0 引言

透明导电氧化物(transparent conducting oxide,TCO)薄膜已经被广泛应用于太阳能电池和 各种平板显示器中^[1-4]。沉积 TCO 薄膜技术有化 学气相沉积和物理气相沉积等^[5-7]。其中,磁控 溅射技术因可操控性好、沉积率高已被应用到了 大规模的工业生产中^[8-10]。考虑到薄膜的可见光 透过率和导电性,目前应用最广泛的是铟锡氧化 物(indium tin oxide,ITO)薄膜。

ITO 陶瓷靶材在磁控溅射过程中, 靶材表面 受到 Ar⁺轰击和被溅射原子再沉积的多重作用而 发生复杂的物理化学变化, ITO 靶材表面会产生 许多小的结瘤,这个现象被称为 ITO 靶材的毒化 现象。

靶材结瘤毒化后,靶材的溅射速率降低,弧光 放电频率增加,所制备的薄膜电阻增加,透光率降 低且均一性变差,此时必须停止溅射,清理靶材表 面或更换靶材,这严重降低溅射镀膜效率^[11]。目 前对于结瘤形成机理尚未有统一定论,如孔伟 华^[12]研究了不同密度 ITO 陶瓷靶材磁控溅射后 的表面形貌,认为结瘤是 In_2O_3 分解所致,导电导 热性能不好的 In_2O 又成为热量聚集的核心,使结 瘤进一步发展;姚吉升等^[13]研究了结瘤物相组成 及化学组分,认为结瘤是偏离了化学计量的 ITO 材料在靶材表面再沉积的结果; Nakashima 等^[14] 采用 In_2O_3 和 SnO₂ 的混合粉末制备 ITO 靶材,研 究了 SnO₂ 分布状态对靶材表面结瘤形成速率的 影响,认为低溅射速率的 SnO₂ 在 ITO 靶材中的不 均匀分布是结瘤的主要原因。尽管结瘤机理尚不 明确,但毋庸置疑的是,结瘤的产生严重影响 ITO 陶瓷靶材的溅射性能,因此,对结瘤的形成机理进 行深入研究具有重要意义。

目前对 ITO 陶瓷靶材磁控溅射行为的研究主 要集中在溅射后表面形貌及结瘤的终态研究,对 靶材在磁控溅射过程中的表面形貌、刻蚀速率、化 学组成受溅射时间影响的变化趋势研究较少。基 于此,本文研究了不同溅射时间后 ITO 陶瓷靶材 的表面形貌、刻蚀环的深度、结瘤的显微结构及组 成,并探讨结瘤形成机理。

收稿日期:2020-07-05;修订日期:2020-12-14

基金项目:国家自然科学基金项目(52004253);宁夏自然科学基金资助项目(2020AAC03507)

通信作者:陈杰(1985—),男,甘肃天水人,郑州大学讲师,博士,主要从事氧化物靶材及薄膜研究,E-mail: Jack113. gg@ 163.com。

1 实验

采用中科院沈阳科学仪器股份有限公司磁控 溅射镀膜设备制备 ITO 薄膜,ITO 靶材中 In₂O₃ 与 SnO₂ 质量比为 90 : 10,镀膜气氛为 Ar+O₂,镀膜 功率为 35 W,基底温度为 225 ℃,镀膜压强为 0.4 Pa,氩氧原子百分比为 80 : 1,溅射时间分别 为 5、10、20 h。在溅射开始前对真空及溅射系统 进行清洁处理,以减少外来杂质的影响,溅射结束 后对靶材结瘤区域取样分析。

利用扫描电子显微镜观察了不同溅射时间后 ITO 靶材表面形貌及结瘤的微观形貌等情况,实 验设备为日本 JEOL 公司生产的 JSM7500F 型场 发射扫描电子显微镜。采用 Rigaku 公司D/MAX-RA 型 X 射线衍射仪分析结瘤的物相结构。利用 X 射线管电子能谱对不同溅射时间后靶材及其结 瘤的元素组成和价态变化进行分析,所使用设备 为日本理学会公司生产的 ESCALAB 210 型 X 射 线光电子能谱仪。利用日本 JEOL 公司生产的 TB28-x-5000 型 X 射线能量色散谱仪研究了结瘤 及其周边化学组分分布情况,观察了结瘤中各元 素的分布。

2 结果与讨论

2.1 磁控溅射过程中 ITO 靶材表面形貌演变

图 1 为不同溅射时间后 ITO 陶瓷靶材的表面形貌照片。由图 1 可以看出,溅射 5 h 后,ITO 陶瓷靶材表面出现明显的刻蚀环,随着溅射时间的延长,刻蚀环深度增加。在溅射过程中,ITO 陶瓷靶材表面溅射区域外出现黑色的沉积物,即结瘤。结瘤区域分为 2 部分,一是在刻蚀环内侧即陶瓷靶材中心区域,二是在刻蚀环外侧靠近陶瓷靶材中心区域,二是在刻蚀环外侧靠近陶瓷靶材的边缘。结瘤的形成时间较短,溅射 5 h 后结瘤已经呈环带状分布,随着溅射的进行,结瘤开始向溅射区域、陶瓷靶材中心和边缘扩展,并且处在结瘤区域边缘的结瘤尺寸明显增大。

图 2 为不同溅射时间后 ITO 陶瓷靶材的刻蚀 深度。由图 2 可以看出,ITO 陶瓷靶材的刻蚀环 是靶材从半径 6 mm 至半径 20 mm 的环形区域, 最大刻蚀深度约在靶材半径 15 mm 处出现。ITO 陶瓷靶材溅射 5、10、20 h 后最大刻蚀深度的平均 值分别为 0.54、1.13、2.20 mm,三者随溅射时间 的延长呈线性递增。但在靠近刻蚀环的边缘(靶 材半径 9 mm 处),经溅射 5、10、20h 后刻蚀深度 的平均值分别为 0.098、0.133、0.202 mm,三者间 偏离线性关系,刻蚀深度并未随溅射时间的延长 呈线性递增,同时溅射速率逐渐降低,且越靠近刻 蚀环边缘速率降低越明显。这是由于结瘤溅射速 率较 ITO 靶材基体低,结瘤最先在刻蚀环边缘形 成,随着溅射时间延长,结瘤数量增多并向刻蚀环 内扩展,导致溅射速率降低。

2.2 ITO 陶瓷靶材表面结瘤的微观结构

从溅射后 ITO 陶瓷靶材表面刮取少量黑色结 瘤进行 XRD 分析,结果如图 3 所示。结瘤物相分 析显示其为典型的立方 $In_2O_3(ITO)$ 结构,没有发 现低价氧化物的衍射峰。根据孔伟华^[12]的研究, 黑色结瘤物由 In_2O_3 、 In_2O 、 SnO_2 、 $[In_xSn_{(1-x)}]_2O_3$ 的混合相构成,而本实验中未发现除 $In_2O_3(ITO)$ 以外的衍射特征峰。由于在 JCPDS 谱图中没有 In_2O 相的衍射数据,无法标定该物相,但根据文 献[15], In_2O 相在 2 θ 为 33. 4°、39. 4°、61°、67. 1° 处有明显的衍射峰出现,这与 $In_2O_3(ITO)$ 相在 2 θ 为 33. 1°、39. 8°、60. 67°、66. 6°处峰形几乎重合, 因此无法依据 XRD 判断 In_2O 相是否存在。

为进一步研究结瘤的化学组成,采用 XPS 对 结瘤进行元素及化学价态分析。图 4 为结瘤的 XPS 全谱图,可以看出结瘤主要由 In、Sn、O、C 4 种元素组成,各元素原子百分含量如表 1 所示。 从表1中可知,结瘤中的 In、O 元素比例严重偏离

Figure 4 XPS spectra of nodules

ITO 陶瓷的化学计量比, In 与 O 原子百分含量的 比值为 0.931, 高于理论值 0.587, 说明结瘤中的 O 原子百分含量远低于化学计量比的 ITO。另 外, 结瘤中 In 与 Sn 原子百分含量的比值为 7.78, 低于理论值 9.76, 说明结瘤中 Sn 元素出现富集 现象。样品中的 C 可能是制备过程中引入的污 染性 C 或溅射镀膜真空系统的泵油挥发所致。

表 1	ΙТΟ	陶瓷靶材	表面结	·瘤的化	学组分
-----	-----	------	-----	------	-----

 Table 1
 Elemental composition of nodules on ITO

ceramic target surface %				
元素	结瘤组分	ITO 靶材理论值		
In	36.944	35.62		
\mathbf{Sn}	4.753	3.65		
0	39.692	60.73		
С	18.611	0		

对图 4 中的 In3d_{5/2}、Sn3d_{5/2}峰进行窄程高分 辨精细扫描,经分峰拟合处理后得到图 5。由图 5 得出,In、Sn 元素在结瘤中分别以 In₂O₃(结合能 为 444.75 eV)、In₂O(结合能为 444.0 eV)和 SnO₂ (结合能为 486.6 eV)、SnO(结合能为 486.05 eV)形式存在^[16]。这种在金属复合氧化物固溶 体中,金属与氧产生低化学价态结构的主要原因: 一是复合氧化物固溶体发生分解,产生低价氧化 物;二是复合氧化物固溶体的 0 空位数量增多, 其中金属元素以高价态氧化物形式与低价态氧化 物形式共存。

Figure 5 XPS spectra of elements in nodules

假设结瘤中 In_2O_3 分解产生 In_2O ,必定也会形成一定量的 SnO 或 SnO₂ 并被 XRD 检测到,但图 3 中并未发现其他物相的衍射特征峰,说明结瘤中没有 In_2O 或其含量极少,因此结瘤主要成分为 In_2O_3 结构的非化学计量比的 ITO 化合物。

采用 SEM 附带的 EDS 对结瘤及其周边化学 组分进行分析,结果如图 6 所示。由图 6 可以看 出,In、Sn、O 三种元素在靶材基体表面与结瘤断 面分布均匀,没有明显差异,但 C 元素在结瘤边 缘出现富集现象。表 2 为图 6 中靠近结瘤的 A 点 与结瘤断面 B 点的 EDS 分析结果,可以看出 A、B 两点的 In、Sn、O 原子相对比例与理论值均有偏 差,二者的 In 与 O 原子百分含量的比值分别为 0.803 和 0.799,高于理论值 0.586,而 In 与 Sn 原 子百分含量的比值为 7.488 和 7.899,低于理论 值 9.760。这种低 O 富 Sn 的趋势与 XPS 分析结 果(表 1)相同。

(a) SEM图
 (b) EDS图
 图 6 ITO 陶瓷靶材表面结瘤的 SEM、EDS 图
 Figure 6 SEM and EDS maps of nodules on ITO ceramic target surface

ৰহ 4	图 0 甲 A 点 柏 D 点 的 EDS 万 机 结 未
Table 2	Chemical composition of point A and

	%		
一志志	A 点原子	B点原子	理论原子
儿系	百分含量	百分含量	百分含量
In	40. 29	39.18	35.62
Sn	5.38	4.96	3.65
0	50.13	49.04	60.73

图 7 为 ITO 陶瓷靶材表面结瘤的不同微观形 貌。图 7(a) 中圆锥状结瘤是出现几率相对较高 的一种形貌,通常结瘤尺度低于 50 μm 时呈此形 状:图7(b)中的带状、多弧状的单个结瘤尺度在 100 µm 左右,这类结瘤可能是由多个相邻的小尺 度结瘤在生长过程中相互合并后形成;图7(c)所 示的结瘤呈规则的圆台状,从断面可以明显看出 结瘤分为内核和外壳两部分,且断面呈辐射状;图 7(d)中的结瘤由约 15 μm 厚的壳层和内部多个 小尺寸结瘤群所组成;图7(e)中为尺度约280 μm 的簇状结瘤群,这类结瘤群通常出现在溅射 时间较长的靶材表面。

(a) 圆锥状结瘤

(b) 带状、多弧状结瘤

(c) 圆台状结瘤

(d) 小尺寸结瘤群

2.3 结瘤形成机理探讨

根据前文分析可知,ITO 陶瓷靶材表面在溅 射过程中产生的结瘤主要成分为 In₂O₃ 结构的非 化学计量比 ITO 化合物,且尺寸不同、形态各异。 当高能 Ar⁺在电场作用下高速轰击 ITO 陶瓷靶材 表面时,表面原子在弹性散射作用下摆脱晶格束 缚从而脱离靶面。对于组织结构相同的陶瓷靶 材,相同 Ar⁺浓度区域的原子溅射速率一致,靶面 以一定速率被均匀刻蚀。但对于具有不同晶体结 构的多相陶瓷而言,由于各相中原子(原子团)的 溅射产额不同,溅射速率产生差异,相同 Ar⁺浓度 区域的靶面会出现不均匀刻蚀现象。

烧结法制备的 ITO 陶瓷靶材由 In₂O₃/Sn 晶 粒和晶内的富 Sn 析出相粒子、In₄Sn₃O₁,晶粒组 成,因此溅射速率可能不同。在 ITO 陶瓷靶材表 面刻蚀环边缘处观察到结瘤初期阶段的形貌,如 图 8 所示。从图 8(a)中可以看出, A 区域和 B 区 域中出现尺寸约 100~200 nm 的凸起状颗粒,这 些颗粒位于晶内趋于中部的位置,从其组分、位置 及尺寸判断是 In₂O₃/Sn 晶内的富 Sn 析出相粒子 在溅射刻蚀后的显露,说明富 Sn 析出相粒子的溅 射速率较 In₂O₃/Sn 基体低。这类颗粒凸起会对 向靶材表面高速运动的 Ar⁺产生散射作用,使颗 粒下部遮挡的 In₂O₃/Sn 基体不能被溅射。当凸 起在靶材表面达到一定高度后,靶面其他区域被 溅射出的原子(原子团)将有一部分直接沉积在 凸起的表面,形成 ITO 包覆层,这种沉积类似低温 快速 CVD 沉积过程。

(a) 结瘤初期阶段的形貌

(b) 堆叠合并的锥状结瘤

ITO 包覆层并不致密,导电性较差,一定程度 上会扰乱该区域的电子运动轨迹,同时使溅射倾 角发生变化,这也导致局部溅射速率降低。根据 磁控溅射过程中靶面被溅射原子的飞行轨迹,一 部分被溅射原子反向沉积到靶面,凸起的 ITO 包 覆层厚度逐渐增加,由于离靶材表面距离越大,获 得原子(原子团)的几率越小,因此凸起最终生长 成锥状,即所谓的结瘤,如图 8(a)中 C 区域所示。 随着溅射时间的延长,相邻的结瘤在生长过程中 相互堆叠合并,形成图 8(b)中的形貌。

首先 ITO 陶瓷靶材表面的颗粒对向靶材高速

运动的 Ar⁺产生散射作用,使该颗粒遮挡下的部 分区域不能被溅射,逐渐形成以该颗粒为顶的凸 起,在靶材其他部位被溅射出的原子(原子团)直 接沉积和反向沉积的共同作用下,颗粒表面形成 结构疏松、导电性和导热性极差的 ITO 包覆层。 由于溅射过程中电荷会在导电率低的结瘤上积 累,当电荷量积累到一定程度后诱发弧光放电并 瞬间聚集热量,使结瘤在热应力作用下破裂,散落 的颗粒成为新结瘤的诱发点,从而导致图 7(b)、 7(d)、7(e)中各种形状结瘤群形成。因此靶材表 面一旦出现结瘤,将迅速向周围蔓延,最终导致靶 材中毒。少数结瘤甚至从靶材表面脱落后形成凹 坑,如图 9(a)所示。另外,在凹坑周围出现不规 则形状的孔洞,如图 9(b)中 *A*、*B* 区域所示,这是 由于结瘤脱落产生的碎片相互搭接所形成孔洞。

(a) 结瘤脱落后形成凹坑

(b) 不规则形状孔洞

图 9 结瘤从靶材表面脱落后 SEM 照片 Figure 9 SEM photographs of nodules drop from target surface

除 In₂O₃/Sn 晶内的富 Sn 析出相粒子作为结 瘤的诱发点外,其他对溅射起遮蔽作用的粒子也 可能成为结瘤的诱发点。如靶材溅射前进行研磨 抛光等表面处理过程中不可避免地造成表面缺 陷,细小的研磨介质(如 SiC)颗粒嵌在其中或附 着在靶材表面,这类颗粒在超声清洗过程中不能 完全移除,从而对靶材的溅射形成阻挡。另外,在 磁控溅射过程中,高能 Ar⁺作用于 ITO 陶瓷靶材 表面产生离子碰撞效应,反应如下^[17]:

> In₂O₂ 高子碰撞效应 →2InO+O

离子碰撞效应使 In₂O₃ 分解产生低价 InO,而 InO 并不稳定,继续分解为低导电率的 In₂O^[14], 尽管其比例极小,但也可能会导致局部溅射速率 降低并诱发结瘤。

因此,在 ITO 陶瓷靶材磁控溅射过程中,可以 采取相应措施,如调整 ITO 陶瓷靶材的烧结工艺, 减少大尺寸纳米富 Sn 析出相以及二次相粒子的 数量,提高晶粒尺寸的均匀性,以减缓结瘤的发 生,从而延长靶材溅射的中毒周期;同时,采用更 加精细的靶材表面处理方式避免溅射过程中外来 颗粒的引入而引起中毒。

3 结论

通过分析 ITO 陶瓷靶材溅射过程中表面形貌 的演变、结瘤组分、微观形貌及靶材表面元素化学 价态随溅射时间的变化趋势,探讨了结瘤的形成 机理,主要结论如下:

(1) 直径为 60 mm 的 ITO 陶瓷靶材磁控溅射 的刻蚀环为半径 6 mm 至半径 20 mm 的环形区 域,溅射 5、10、20 h 后,其最大刻蚀深度分别为 0.54、1.13、2.20 mm。随着溅射时间的延长,靶 材表面开始出现结瘤并向刻蚀环蔓延,使刻蚀环 边缘溅射速率降低。

(2)结瘤主要由缺 O 富 Sn 的非化学计量比 ITO 组成,是靶材被溅射原子在低溅射速率处反 向沉积所形成。由于 Sn 原子在不同区域的溅射 差异以及靶面被溅射的 O 原子易形成 O 离子,从 而使结瘤组分偏离化学计量比。

(3) In₂O₃/Sn 晶内的富 Sn 析出相粒子是溅 射早期结瘤形成的主要原因,导电性及导热性极 差的结瘤在溅射过程中易积聚电荷并诱发弧光放 电,使其在热应力作用下破裂,散落的颗粒会成为 新结瘤的诱发点,导致结瘤覆盖率迅速增大。

参考文献:

- [1] MEI F S, YUAN T C, LI R D, et al. Effects of particle size and dispersion methods of In₂O₃-SnO₂ mixed powders on the sintering properties of indium tin oxide ceramics[J]. International journal of applied ceramic technology, 2018, 15(1):89-100.
- [2] 帕提曼·尼扎木丁,玛日耶姆·图尔贡,阿布力孜·伊 米提.MOFs 薄膜的可控制备及在光波导气体传感 器中的应用[J].郑州大学学报(工学版),2019,40
 (6):53-56.
- [3] QI C, CHEN J, SUN B S, et al. Microstructure and phase transformation of IGZO targets with different stoichiometry during sintering [J]. Ceramics international, 2020, 46(8):10568-10577.
- [4] CHEN J,ZHONG J M,LUO W, et al.Study on powder preparation of IGZO target and its effect on sintering
 [J].Journal of alloys and compounds, 2019, 800:468 -477.
- [5] HONG S J, HAN J I.Synthesis and characterization of indium tin oxide (ITO) nanoparticle using gas evaporation process[J].Journal of electroceramics, 2006, 17 (2/3/4):821-826.
- [6] ZHANG W, ZHU G S, ZHI L, et al. Structural,

electrical and optical properties of indium tin oxide thin films prepared by RF sputtering using different density ceramic targets [J]. Vacuum, 2012, 86(8): 1045-1047.

- BELLIDO-GONZÁLEZ V, DANIEL B, COUNSELL J, et al.Reactive gas control of non-stable plasma conditions[J].Thin solid films, 2006, 502(1/2):34-39.
- [8] CHOU C S, GUO M G, LIU K H, et al. Preparation of TiO₂ particles and their applications in the light scattering layer of a dye-sensitized solar cell[J]. Applied energy, 2012, 92:224-233.
- [9] WU K R, TING C H, WANG J J, et al. Characteristics of graded TiO₂ and TiO₂/ITO films prepared by twin DC magnetron sputtering technique [J]. Surface and coatings technology, 2006, 200(20/21):6030-6036.
- [10] 姜辛,孙超,洪瑞江.透明导电氧化物薄膜[M].北 京:高等教育出版社,2008.
- [11] OMATA T, KITA M, OKADA H, et al. Characterization of indium-tin oxide sputtering targets showing various densities of nodule formation [J]. Thin solid films, 2006,503(1/2):22-28.
- [12] 孔伟华.ITO 靶材在磁控溅射过程中的毒化现象

[J].无机材料学报,2002,17(5):1083-1088.

- [13] 姚吉升,唐三川,陈坚,等.ITO 靶材在溅射过程中结 瘤行为的研究[J].真空科学与技术,2002,22(12): 47-50.
- [14] NAKASHIMA K, KUMAHARA Y. Effect of tin oxide dispersion on nodule formation in ITO sputtering [J]. Vacuum, 2002,66(3/4):221-226.
- [15] LIPPENS P, SEGERS A, HAEMERS J, et al. Chemical instability of the target surface during DC-magnetron sputtering of ITO-coatings [J]. Thin solid films, 1998, 317(1/2):405-408.
- [16] ANSELL R O, DICKINSON T, POVEY A F, et al. Quantitative use of the angular variation technique in studies of tin by X-ray photoelectron spectroscopy [J].
 Journal of electron spectroscopy and related phenomena, 1977, 11(3): 301-313.
- [17] ISHIBASHI S, HIGUCHI Y, OTA Y, et al. Low resistivity indium-tin oxide transparent conductive films. II. effect of sputtering voltage on electrical property of films [J]. Journal of vacuum science & technology A: vacuum, surfaces, and films, 1990, 8 (3):1403-1406.

Study on Nodulation Behavior of ITO Ceramic Target during Sputtering

LUO Wen¹, SUN Benshuang², LIU Shuhan², CHEN Jie², MENG Jiang¹, LI Shurong¹

(1.State Key Laboratory of Special Rare Metal Materials, Northwest Rare Metal Materials Research Institute, Shizuishan 753000, China; 2.Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, China)

Abstract: The application and properties of ITO ceramic target were seriously affected by its nodulation behavior, it was extremely important to grasp the formation mechanism of nodulation. So the experimental study on the ITO target was carried out by magnetron sputtering technology under different sputtering parameters. The nodulation behavior of target was analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results showed that the depth of etch ring increased with increasing sputtering time, and then the nodules were formed on the target surface and spread to the etching ring, which reduced the sputtering rate at the edge of etching ring. The nodules were mainly composed of nonstoichiometric ITO, which lacked of O but rich in Sn, and was formed by reverse deposition at low sputtering rate. The nodulation component deviated from its stoichiometric ratio, due to the sputtering difference of Sn atoms in different regions and the O ions were easily formed on target surface. The formation of nodules in the early stage of sputtering was mainly caused by the Sn-rich precipitated particles in In_2O_3/Sn crystals. And they were easy to accumulate charges and induce are discharge due to the poor electrical and thermal conductivity, which made them break under the thermal stress. The scattered particles became the new induction points of nodules, resulting in the rapid increase in the coverage of nodules.

Key words: ITO target; magnetron sputtering; nodulation; microstructure; nodulation mechanism